This Unified DevOps Deployment Tutorial guides you through building a DevOps pipeline that integrates:
- ArchOps — Architecture-first design in deployment
- Governance in DevOps — Policy enforcement and compliance
- DataOps — Data pipeline automation and validation
We’ll use practical tools like Terraform, OPA (Open Policy Agent), and Apache Airflow to create a comprehensive deployment.
Prerequisites
- A cloud provider account (AWS, Azure, or GCP)
- Terraform installed on your system
- Kubernetes cluster (for Governance and DataOps steps)
- Basic knowledge of CI/CD pipelines
Step 1: Implementing ArchOps with Terraform (Architecture-First Design)
Objective:
Ensure infrastructure is designed with architecture artifacts prioritized over source code.
Tools Used:
✅ Terraform
✅ AWS (EC2, VPC, etc.)
1.1. Define Architecture as Code (AAC)
Create a file structure that separates architectural definitions from deployment logic.
mkdir archops-project && cd archops-project
mkdir architecture modules environments
1.2. Define Network Architecture in architecture/network.tf
This file outlines the core network structure.
architecture/network.tf
resource "aws_vpc" "main_vpc" {
cidr_block = "10.0.0.0/16"
enable_dns_support = true
enable_dns_hostnames = true
}
1.3. Define Compute Resources in modules/ec2_instance/main.tf
modules/ec2_instance/main.tf
resource "aws_instance" "web_server" {
ami = "ami-0abcdef1234567890"
instance_type = "t3.medium"
subnet_id = aws_subnet.public_subnet.id
}
1.4. Deployment with Terraform
Initialize and deploy:
terraform init
terraform apply
✅ Step 1 Complete: Your infrastructure now follows architecture-first design principles.
Step 2: Embedding Governance with Open Policy Agent (OPA)
Objective:
Implement policy enforcement to ensure deployments adhere to security, performance, and compliance standards.
Tools Used:
✅ OPA (Open Policy Agent)
✅ Kubernetes Admission Controller
2.1. Install OPA as a Kubernetes Admission Controller
Deploy OPA in your Kubernetes cluster:
kubectl apply -f https://openpolicyagent.github.io/gatekeeper/charts/gatekeeper.yaml
2.2. Create a Policy for Resource Limits
policies/limit_resources.rego
package kubernetes.admission
deny[{"msg": msg}] {
input.request.kind.kind == "Pod"
not input.request.object.spec.containers[_].resources.limits.cpu
msg := "All containers must have CPU limits defined."
}
2.3. Apply Policy
kubectl apply -f policies/limit_resources.rego
✅ Step 2 Complete: Your DevOps pipeline now enforces policies for resource control, security, and compliance.
Step 3: Building a DataOps Pipeline for Data Automation
Objective:
Automate data validation, cleaning, and monitoring.
Tools Used:
✅ Apache Airflow
✅ Great Expectations (for data validation)
3.1. Install Apache Airflow
Deploy Airflow via Docker Compose:
docker-compose.yaml
version: '3'
services:<br> airflow:
image: apache/airflow:2.6.0
ports:
- "8080:8080"
environment:
- LOAD_EX=n
- EXECUTOR=LocalExecutor
volumes:
- ./dags:/opt/airflow/dags
docker-compose up -d
3.2. Create an Airflow DAG for DataOps Automation
dags/data_pipeline.py
from airflow import DAG
from airflow.operators.bash import BashOperator
from datetime import datetime
with DAG("data_pipeline", start_date=datetime(2024, 1, 1), schedule_interval="@daily") as dag:
clean_data = BashOperator(
task_id="clean_data",
bash_command="python3 /opt/airflow/scripts/clean_data.py"
)
validate_data = BashOperator(
task_id="validate_data",
bash_command="great_expectations checkpoint run my_checkpoint"
)
clean_data >> validate_data
3.3. Create a Data Validation Rule in Great Expectations
great_expectations/expectations/orders_validation.json
{
"expectations": [
{
"expectation_type": "expect_column_values_to_be_between",
"kwargs": {
"column": "order_total",
"min_value": 0
}
}
]
}
✅ Step 3 Complete: Your data pipeline now automates data cleaning and validation in CI/CD.
Step 4: Integrating Everything into a Unified DevOps Pipeline
Objective:
Combine ArchOps, Governance, and DataOps into one streamlined workflow.
4.1. Create a GitLab CI/CD Pipeline
.gitlab-ci.yml
stages:
- build
- deploy
- validate
build:
script:
- terraform init
- terraform apply -auto-approve
deploy:
script:
- kubectl apply -f policies/limit_resources.rego
validate:
script:
- airflow dags trigger data_pipeline
4.2. Run the Pipeline
git push origin main
✅ Step 4 Complete: The complete pipeline now handles architecture-first design, governance policies, and data validation automatically.
Step 5: Testing and Monitoring
1. Test Infrastructure:
terraform validate
2. Monitor Policy Violations:
kubectl logs -l app=gatekeeper
3. Check Data Pipeline Status:
airflow dags list
Conclusion about the Unified DevOps Deployment
This Unified DevOps Deployment Tutorial combines key practices from ArchOps, Governance, and DataOps to create a powerful CI/CD pipeline. By following this guide, you’ll achieve:
- Scalable and structured cloud infrastructure
- Enforced governance policies for security and performance
- Automated data processing pipelines for improved data quality